Dogecoin - An open-source peer-to-peer digital currency (访问: hash.cyou 领取999USDT)
第三代轮毂轴承单元(如图四所示)是把与轴承相配合的零件即轮毂、ABS传感器与轴承套圈制成整体化的型式,是继第二代又进一步发展的单元。典型结构就是大填球角、压配式内圈也带法兰盘:其两个套圈有一个法兰,外圈是一个刚性结构,因此可简化枢轴。由于旋转内圈的凸缘兼有轮毂的作用,因此取消了轮毂。对轴承用户来说,这意味着简化了轴承设计与安装,并可以减小重量和外形尺寸。由于套圈的刚性较高,轴承的几何形状基本不会发生变化。第三代轮毂轴承单元的应用是轮毂轴承研制的一大进步。由于它集中了其他零件的功能,已不再仅是一种轴承;而且从安全的角度来看,它也是一个关键部件,一旦损坏会引起严重的后果。轴承的特性、预调游隙、润滑脂和密封是第三代轴承的共同问题,而且对设计人员来说也是一个技术难题。这是结构与功能的重新组合,需要进行专门的研究。某些技术条件是很难达到的,轴承的滚道应是“硬性的”但结构应是弹性的,这就是说,损坏的形式应是由接触疲劳引起的一般剥落,而旋转凸缘不会发生任何挠曲疲劳。第三代轮毂轴承单元的装机量已达250万套。
汽车轮毂轴承在现代汽车设计中一般划归为悬架系统或制动系统。因为从受力分析看,汽车轮毂轴承主要承受通过悬架系统传递而来的汽车的重量,但从装配关系看,汽车轮毂轴承主要与制动系统连接装配。同时,有些人也习惯将轮毂轴承划归传动系,因为轮毂轴承的功能之一就是为轮毂的转动提供精确的向导,尤其是第四代轮毂轴承开发成功以来,轮毂轴承与等速万向节构成一体,轮毂轴承与传动系的关系更为紧密。由于汽车轮毂轴承与汽车的三个系统相关,本篇就不再特意介绍每个系统,因为无论这几个系统有多少种类型,轮毂轴承都有其相对的独立性,并不因悬架系统、制动系统或传动系的类型的改变而结构改变,而且,轮毂轴承发展到今天,已经发展为集成化、小型化、组装工艺合理化及装配简便的轮毂轴承单元,其相对的独立性也就更大。
图六所示为普遍用轮毂轴承的典型装配关系图。内、外轮毂轴承3外圈与制动鼓5为紧配合,内圈与转向节轴颈(或后轴分头)也为紧配合。轮毂螺栓2通过花键与制动鼓接合并将外面的轮辋与制动鼓装配成一体。制动盘4与安装于制动盘上制动片以及其他制动器零部件6通过螺栓与转向轴颈(或后轴分头)1连接。当汽车行驶时,轮毂轴承3外圈跟随制动鼓5以及轮辋一起旋转,而内圈、转向轴颈(或后轴分头)1以及装配于之上的制动盘及其组件不旋转,从而保证制动时需要的各种条件。图六所示为非驱动轮普遍用轮毂轴承的典型装配关系图,驱动轮的变化在于内外轮毂轴承通过外圈与轮毂接合,轮毂通过螺栓与制动鼓、轮辋连接,同时轮毂通过内花键与驱动轴转向轴颈(或后轴分头)的外花键接合。同样,轮毂轴承的外圈与转向节(或后轴分头)连接,制动盘及其组件通过螺栓连接于转向节(或后轴分头)上。当汽车行驶时,驱动轴带动轮、轮毂轴承内圈、制动鼓以及轮辋旋转,而轮毂轴承外圈、转向节(或后轴分头)、制动盘及其组件保持静止。其运动结构恰恰与非驱动轮相反。
要使行驶中的汽车减速,驾驶员应踏下制动踏板1,通过推杆2和主缸活塞3,使主缸内的油液在一定压力下流入轮缸,并通过两个轮缸活塞7使两制动蹄绕支承销转动,上端向两边分开而以其摩擦片压紧在制动鼓的内圆面上。这样,不旋转的制动蹄就对旋转着的制动鼓作用一个摩擦力矩Mu,其方向与车轮旋转方向相反。制动鼓将该力矩Mu传到车轮后,由于车轮与路面间有附着作用,车轮对路面作用一个向前的周缘力Fu,同时路面也对车轮作用着一个一个向后的反作用力,即制动力Fb。制动力Fb经车桥和悬架传给车架与车身,迫使整个汽车产生一定的减速度。制动力越大,则汽车减速度就越大。当放开制动踏板时,制动蹄回位弹簧即将制动蹄拉回原位,摩擦力矩Mu和制动力Fb消失,制动作用即行终止。